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Abstract—In this paper we consider passive sensor imaging
with ambient noise sources by suitably migrating the cross
correlations of the recorded signals. We use an imaging functional
that relates to the classic Kirchhoff migration functional. We
analyze the properties of the imaging functional in the high-
frequency regime which shows that it produces sharp images.
We identify the scaling assumptions that allow us to image
respectively, the support of the random sources and the medium
variations when these may come in the form of clutter. Numerical
simulations confirm the theoretical predictions.

I. INTRODUCTION

In a number of physical situations there are background or
ambient noise present in a scenery of interest. This is for in-
stance the case in the earth’s crust where microseisms and also
signals due to ocean swells can propagate over long distances.
Thus, even without using an active source a measurement
array would detect signals. The surprising fact is that these
signals, generated by ambient noise, actually can be used for
imaging. By cross correlating such noisy measurement one
can in particular estimate the Green’s function of the wave
equation in an inhomogeneous medium. The situation we shall
consider is the one in which noise sources with unknown
spatial support emit stationary random signals, that propagate
into the medium and are recorded at a set of observation
points. The cross correlation of the recorded signals has been
shown to provide a reliable estimate of the Green’s function
and the travel time between the observation points [10], [11].
Mathematical analyses of cross correlation of noisy signals
have been carried out for instance in [1], [5], [7], [8], showing
the importance of medium heterogeneity and the delicate
interaction of phenomena on different scales. A central aspect
is to identify how the statistics of the signal on the microscale
relate to the macroscale. The travel time estimates can be
used for background velocity estimation [6]. Tomographic
travel time velocity analysis, based on cross correlations, was
applied successfully for surface-wave velocity estimation in
Southern California [12], in Tibet [14], and in the Alps [13].
In [4] inter-period differentials in cross-correlations were used
to identify seismic velocity variations which were correlated
to subsequent eruptions. Cross correlations of noisy signals
recorded by a passive sensor array can also be processed
in order to image the medium. The idea presented in [8]
is to backpropagate the cross correlation matrix by applying
a simple Kirchhoff migration (KM) functional, which is a

technique widely used in active seismic imaging [2]. We
continue this analysis here and identify explicitly the form
of the Kirchhoff functional in the case with imaging of
incoherent medium clutter. We shall assume a here a two-
dimensional medium and a passive sensor array on the surface
of a halfspace where clutter and ambient noise sources are
located. Our goal is to image the source locations and the
scatterers embedded in the medium, the variations of the speed
of propagation around a known constant background velocity,
using the cross correlation matrix of the recorded signals. We
consider an imaging functional related to the classic Kirchhoff
imaging scheme in that it is a function of the cross correlation
matrix. The function we consider here is obtained by summing
the cross correlations evaluated at some special differential
travel times over a limited offset range. By a high-frequency
asymptotic analysis and by numerical simulations we will
show that this imaging functional produces sharp images. In
Section II the schematic wave propagation scenario that we
shall consider is described . Then, we consider in Section III
the problem of the localization of the noise sources and move
on in Section IV to the problem of the localization of scatterers
embedded in the medium.

II. WAVES, AMBIENT NOISE AND CLUTTER

We consider the solution u of the non-dimensionalized
scalar wave equation in a two-dimensional inhomogeneous
medium with background velocity c(x):

1
c2(x)

∂2u

∂t2
−∆xu = n(t,x), (1)

with x = (x, z). The source term n(t,x) models a random
ambient noise sources and is supported in the halfspace z < 0.
It is assumed to be a stationary process in time and being delta-
correlated in space, so that its autocorrelation function has the
form

〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)K(y1)δ(y1 − y2). (2)

Here the brackets stand for the statistical averaging with
respect to the distribution of the sources. The function F has
support λ0/c0 with λ0 playing the role of source wavelength in
this problem, moreover, we assume that its Fourier transform,
F̂ , is smooth and vanish at the origin, moreover, is of rapid
decay at infinity. The compactly supported function K(y) is
the source region and we seek first to estimate this.



The clutter or medium perturbation comprise two parts.
The first is smooth with slow variation and is modeled by
a smooth and deterministic function. The second is rapid and
with random fluctuations and is modeled by a stochastic field.
We shall assume that the background velocity is of the form

1
c2(x)

=
1
c20
{1 + h(x)(σ0 + σ1ν(x))} , (3)

where σ0 and σ1 are the magnitudes of the smooth and random
parts of the medium clutter. The stationary random process ν
has mean zero, variance one, and correlation length `0 defined
by

`20 =
∫

E[ν(0)ν(x)]dx,

where E stands for the averaging with respect to the distri-
bution of the random medium. The smooth and deterministic
function h gives the support of the clutter which is assumed to
be compactly supported, connected and located in the region
z < 0, moreover, disjoint from the random source support,
we also seek to estimate this clutter support. Note that in this
paper we focus on the rough clutter component so that σ0 = 0.

Regarding problem scaling we shall assume

λ0 � L, σ0 �
(λ0

L

)3/2

, σ1 �
( λ0

`
2/3
0 L1/3

)3/2

, (4)

where L is the characteristic dimension of the scattering region
and L is the typical propagation distance.

Next, we describe the pre-processing of the data to “cre-
ate signal from noise” via forming correlations. The (one
dimensional) receiver array is at the surface z = 0 with
inter-element spacing smaller than the wavelength so that we
can assume continuous measurements. We form the empirical
cross correlation of the signals recorded at two receivers at
x1 and x2 by:

CT (τ,x1,x2) =
1
T

∫ T

0

u(t,x1)u(t+ τ,x2)dt. (5)

As shown in [8], it is a statistically stable quantity in the
sense that it converges to its statistical mean (with respect to
the random sources), C(τ,x1,x2), when the integration time
T goes to infinity. Writing the recorded field in terms of the
Green’s function and the source term, and using the particular
form of the autocorrelation function of the sources, we obtain
the expression:

C(τ,x1,x2) =
1

2π

∫∫
dydωF̂ (ω)K(y)

×Ĝ
(
ω,x1,y

)
Ĝ
(
ω,x2,y

)
e−iωτ , (6)

where Ĝ is the outgoing time-harmonic Green’s function.
When the background velocity is homogeneous c(x) = c0, the
Green’s function is given in terms of the zeroth order Hankel
function of the first kind. Using the asymptotic form of the
Hankel function we find that for |ω||x− y|/c0 � 1:

Ĝ(ω,x,y) =
√
c0

2
√

2π
ei sgn(ω)π/4√
|ω||y − x|

exp
(
i
ω

c0
|y − x|

)
. (7)

In our context the central part of this Green’s function is the
phase associated with the travel time: T (x,y) = |y − x|/c0.

Formally, we find that if we consider the situation with point
support for the sources at yc and approximate the Green’s
function by its phase component then:

C(τ,x1,x2) ≈ F (τ − [T (yc,x2)− T (yc,x1)]).

This suggests the Kirchhoff imaging functional at a search
point yS and recivers at x1, . . . ,xN as being defined by

IKM
(
yS
)

=
N∑

j,l=1

CT
(
T (yS ,xl)− T (yS ,xj),xj ,xl

)
. (8)

We assume that the receivers are uniformly distributed in the
interval [−A/2, A/2] at the surface (z = 0) and separated
by δx = A/N < λ0. In the frequency domain, the imaging
functional (8) means that a matched filter is applied in order
to compensate for the phase term in the high-frequency
expression of the cross correlations and is the form which
we will use in subsequent sections.

III. LOCALIZING THE NOISE SOURCES FROM
CORRELATIONS

We consider the scaling assumptions described in Equation
4. This allow us to carry out a high-frequency analysis of the
Kirchhoff imaging functional. A main technical tool that we
use is the stationary phase approximation which approximates
integrals by identifying the main contribution as coming from
points of stationarity of the phase. This approximation is
accurate in a regime of very small wavelength λ0, when the
phase fluctuates fast due to the high frequencies. Physically
the stationary points corresponds to directions of information
propagation.

We then find that, in the case with homogeneous medium, so
that σ0 = σ1 = 0, the Kirchhoff imaging functional gives an
image of the source support. Approximating sums by integrals
we can write :

IKM
(
yS
)

=
N2

16π2

∫∫
dydωF̂ (ω)K(y)KKM(ω,y; yS),

(9)
where the refocusing kernel is

KKM(ω,y; yS) =
c0

A2|ω|

∫∫ A/2

−A/2

dx1dx2√
|y − x1||y − x2|

×eiω
[
T (yS ,x1)−T (y,x1))−T (yS ,x2)+T (y,x2)

]
, (10)

with xj = (xj , 0). We next comment on the refocusing kernel.
Assume yS = L(cos(θ), sin(θ)) with L � 1 and y =

yS + (y1, y2), we have

KKM(ω,y; yS) ∼ c0
|ω|L

sinc2

(
ωA[y1 − y2 sin(2θ)/4]

2c0L

)
.

Thus, with the source just below the array (i.e. θ = 0) with
A � L we see that we have a good resolution in the lateral
direction, but very poor resolution in the depth direction.
Indeed the longitudinal resolution is given by the Rayleigh



resolution, λ0L/A. However, with an aperture of order the
distance to the clutter to be imaged the Kirchhoff imaging
functional will give good resolution also in the depth direction
via subarray processing.

Thus, indeed this functional focuses at the support of the
sources as determined by K. This process amounts to using
differential travel time estimates, as given by the correlations,
to construct the image. We remark that assuming free boundary
conditions, modeling for instance the air-ground interface, may
yield enhanced depth resolution due to reflections from the
interface.

We next carry out numerical simulations in an open two-
dimensional homogeneous medium. The source distribution is
modeled by a collection of point sources randomly distributed
in a compactly supported domain. The point sources emit sta-
tionary random signals with Gaussian statistics and mean zero.
The power spectral density is F̂ (ω) = |ω| exp(−ω2/400). The
background velocity is one. Therefore the carrier frequency is
ω0 ' 14 and the carrier wavelength is λ0 ' 0.45. There are
200 sensors at the surface z = 0 separated by δx = 0.125 on
the interval x ∈ (−12.5, 12.5). This corresponds to a dense
array for (almost) all frequencies in the bandwidth. There are
300 independent point sources randomly distributed in the
three rectangles [−1.5,−1]× [−9,−8], [−0.5, 0]× [−10,−9],
and [0.5, 1]×[−11,−10]. The reconstruction grid is a 100×100
uniform grid on the square [−4, 4]× [−15,−5].

In Figure 1 we can observe the good resolution obtained
with the Kirchhoff migration method and that we indeed can
identify the source region from the sensor array correlations.

IV. DETECTING MEDIUM CLUTTER

We now consider imaging of the scattering region. In this
case the noise from the sources will be scattered by the clutter
which then acts as secondary sources. Differential travel times
estimates can now be associated with these secondary sources
via the correlations and we can use the Kirchhoff imaging
functional as before to identify the image. We remark that the
functional also will focus at the support of the noise sources.
An important aspect of this configuration is to what extent the
scatter will redirect signal energy. If we have smooth scatterers
with only very weak refraction then there should be a “ray”
going from the measurement array through the point we want
to image to a point in the ambient noise region, otherwise, the
measurements will not give a good image of this point. The
situation with smooth clutter, either a deterministic component
(σ0 6= 0) or a random component with `0 � λ0 can in fact
best be analyzed via the Radon transform in the context of
wide aperture as the Kirchhoff functional can be expressed in
terms of products of line integrals of respectively clutter and
source distributions. Thus, identification of the clutter region
in this case require the prior identification of the source region.
We shall not focus on this case here, see [9].

We consider thus here the situation with σ0 = 0 and σ1 6= 0
and `0 � λ0 which corresponds to a situation with strong
redirection of signal energy. Then we find that the expected
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Fig. 1. Imaging the sources when the spatial source distribution is compactly
supported in three rectangles. The numerical set-up is plotted in the top
figure, where the triangles represent the sensors at the surface z = 0 and
the independent point sources lie in the rectangles in the subsurface. The
image obtained with the Kirchhoff method is plotted in the bottom figure.

value of the Kirchhoff imaging functional, E
[
IKM

(
yS
)]

, will
focus on the clutter in addition to the random sources and in
fact give an image of h in the case with large aperture. We
can write explicitly, using a Born approximation, for yS in
the vicinity of the clutter:

E
[
IKM

(
yS
)]

=
N2

16π2

∫∫
dydωF̂ (ω)|ω|3H(y)

×KKM(ω,y,yS), (11)

where the function

H(y) =
σ2

1l
2
0

8πc0
h2(y)

(∫
K(z)
|z − y|

dz

)
(12)

has the same support as h. Thus, by comparison with (9) we
see that the resolution scaling will be similar as when imaging
the source distribution.

In the above equation E represents expectation with respect
to the distribution of the clutter. In the high-frequency limit one
can show that this imaging functional indeed is statistically
stable so that the imaging functional computed for a certain
realization of the clutter gives an estimate of the clutter
support, that is, E[IKM] ≈ IKM. Verifying this involves a
fourth order moment calculation of the data. Clearly, this
property of statistical stability is important for imaging in a
practical setting.
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Fig. 2. The Kirchhoff medium image when there is one point source located
at (−20,−100). The sensors are at the surface z = 0 and the scatterers lie
in a rectangle in the subsurface.

In the numerical simulations the background velocity is one
and there are 200 sensors at the surface z = 0 separated by
δx = 0.125 on the interval x ∈ (−12.5, 12.5). There is one
noise point source located at (−20,−100). There are 100 point
scatterers with reflectivities 0.1 randomly distributed with the
uniform distribution in the rectangle [−0.5, 0]×[−10,−9]. The
power spectral density of the noise sources is here F̂ (ω) =
|ω|(1 + ω2)−3/2 exp(−ω2/400), so that |ω|3F̂ (ω) is close to
the spectral density used in the simulations of Section III and
the noise signals scattered by the scattering region have almost
the same spectrum as the one of the noise signals emitted by
the sources in Section III.

The result is shown in Figure 2 shows that even with only
one noise source we can image the scatterer. One can see,
however, that the direction of the energy flux coming from
the source point has an impact on the image (the energy flux
has approximately the direction of the vector (1, 5) since the
point source is located at (−20,−100)).

V. CONCLUSIONS

In this paper we have discussed a promising passive imaging
technique: migration of cross correlation of noisy signals. We
have described how classic migration techniques generalize
to the case of ambient noise and correlation based imag-
ing. The important analytic tool that we have used is high-
frequency analysis which in fact yield simple characterization
for complex quantities defined in terms of quadratic and
forth order functionals of the data. The framework that we
have considered is not limited to the high-frequency waves
case, however, this is a convenient assumption to identify
explicit expressions for the imaging functionals and associated
resolution.

We stress also that the formulation is high-frequency in that the
wavelength is short relative to the total propagation distance,
however, as we discussed above the wave length can be
large relative to the target, that is, the medium clutter to
be imaged. Important generalizations of the techniques set
forth are in particular: i) the case with three-dimensional
media and non-homogeneous, but slowly varying background
which can be analyzed via WKB techniques. ii) considering
higher order, that is fourth order correlations, see [8]. iii) con-
struction of optimized imaging functionals, both with respect
to resolution and statistical stability, exploiting in particular
fast transform in regular sampling configurations, see [9]. iv)
detailed analysis of signal versus noise relations and the design
of explicit detection tests. v) other source and measurement
configurations, we mention that we here considered the so-
called backlight configuration.
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